1.基本矩阵的求解方法

  1. 直接线性变换法

    对于一对匹配点 x1=[u1,v1,1]Tx2=[u2,v2,1]Tx_1=[u_1, v_1, 1]^T, x_2=[u_2, v_2, 1]^T,根据对极约束 x2TFx1=0x_2^TFx_1=0,

    (u1v11)[F11F12F13F21F22F23F31F32F33](u2v21)=0\left(\begin{array}{lll} u_{1} & v_{1} & 1 \end{array}\right)\left[\begin{array}{lll} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{array}\right]\left(\begin{array}{c} u_{2} \\ v_{2} \\ 1 \end{array}\right)=0

    f=[F11,F12,F13,F21,F22,F21,F31,F32,F31]\boldsymbol{f}=\left[\begin{array}{lllllllll} F_{11}, & F_{12}, & F_{13}, & F_{21}, & F_{22}, & F_{21}, & F_{31}, & F_{32}, & F_{31} \end{array}\right]^{\top}, 有

    [u1u1,u1v2,u1,v2u1,v1v2,v1,u2,v2,1]f=0\left[u_{1} u_{1}, \quad u_{1} v_{2}, \quad u_{1}, \quad v_{2} u_{1}, \quad v_{1} v_{2}, \quad v_{1}, \quad u_{2}, \quad v_{2}, \quad 1\right] f=0

    上式对于每一对匹配点都提供一个约束

    • 8点法
    • 最小二乘法

    image-20220221203656526

  2. 基于RANSAC的鲁棒方法

    • RANSAC is a resampling technique that generates candidate solutions by using the minimum number observations (data points) required to estimate the underlying model parameters.

    image-20220221204712949